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1. Introduction

A key task for many vision systems is to extract information from a sequence

of images. This information can be useful to solve important problems such

as recovering the 3-D velocity field, or segmenting the image into paris cor-

responding to different moving objects, or reconstructing the 3-D structure

of surfaces. The recovery of the 2-D motion field, (that we define as the

projection on the image plane of the 3-D velocity field) is thought to be an

essential step in the solution of these problems. The data available, how-

ever, are temporal variations in the brightness pattern. These variations are

usually associated with a perceived motion field, called optical flow (Gibson,

1950; Fennema and Thompson, 1979; Horn and Schunck, 1981). In order

to recover the 2-D motion field, the assumption that the 2-D motion field

and the optical flow coincide has often been made. It must be noted though,

that this assumption is clearly satisfied only in the case in which variations

in the brightness pattern correspond to features of the visible, 3-D surfaces.

In fact several authors have developed algorithms to reconstruct the 2-D mo-

tion field from optical flow data defined only at locations of features in the

image (Hildreth, 1984a,b: Waxman, 1986). Examples in which this assump-

tion does not, hold are known (Horn, 1986). but they have been regarded as

pathological cases. As a matter of fact, algorithms that deal with the recov-

erv of the 2-D motion field from dense optical flow data have been proposed,

with the more or less explicit assumption that the two fields are the same

(Horn and Schunck, 1981; Nagel. 198.1: Kanatani, 1985).

In this paper we show that the optical flow and the motion field are in

general different, unless very special conditions are satisfied. \e explicitly

compute the difference between their normal conponents (the component,

along the direction of the gradient) under broad assumpt ions. We show
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that they are arbilrarily close where the image gradient is sufficiently strong.

Hence. feature-based matching algorithms that rely on edges of various types

(including texture edges) are more appropriate than point-to-point ones to

solve problems that rely on accurate recovery of the 2-I) motion field, such

as structure from motion. One may then ask, what is the optical flow for? In

the second part of the paper we suggest that ineaningful information about

the 3-I) velocity field and the 3-D structure can be obtained from qualitative

properties of the 2-I) motion field. WVe then argue that this information can

be retrieved directly from the optical flow or its normal components. WVe

describe a specific approach that exploits results from the theory of stability

of dynamical systems. A more detailed analysis of this approach will be

presented in a forthcoming paper by V. Torre and coworkers.

The paper is divided in two parts. In the first, we define the probleri

and we state explicitly the assumptions that we have used. In particular, we

consider in detail how image irradiance can be related to scene radiance in

the case of a scene consisting of non-lambertian surfaces. We describe. t hen.

a met hod that allows us to show that the optical flow and the mot ion field are

almost always different. \"e analy ically compute the diff'erence between the

normal components of the two fields assuming. first. the lamubertian niodel

of reflectance and then a more realistic one for arbitrar\ rigi id 111ton Of'
a generic surface. We also calculate how this difere, nce depends on thie .8

image gradient and thet 3-1) velocily of iov ing oI)jccts. In the second part

we show how both the optical flow and th e ni olion field can be proe(It,

to becone vector fields tangent to flows of dynamical systems. The opt ia

flow then. ('an be considered as a perturbed mot ion field under the condtit ions

determined in the first part. Results frot the theory of sla bilit\ of d.\narmital "

sl'-.'i '.iiggesl I i;1 qrralilat ive, illv rt cril., Of Ilt, r l mito fiOi l l d , ,

.071 for the optical flow. We sketch some, example of thes(' properties ard ho\\
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they can be used in a description of the 3-1) velocity field. We finally discuss

briefly some connections with biological systems.

2. Preliminaries

In this chapter we review the definitions of motion field and optical flow, and

we state the assumptions that we used throughout the paper. In particular,

we consider in detail how image irradiance can be related to scene radiance

in the case of a scene consisting of non-lambertian surfaces.

2.1. Definitions

Let us define notations and summarize definitions that will be useful in what,

follows. For more details on the geometry of perspective projection see Ap-

pendix Al. Throughout the following we will assume, if it is not otherwise

stated, that an. expression can he differenliated as many times as nedeed.

Let

xT, (x (x.n)n) (2.1.1) .5fx.n.
be the equation defining the projection of a generic point on the image plane.

where x,, (X1.y,.O) is the position vector of the projected point. x

(X.yz) is the position vector of the point, n is the unit vector normal to

the image plane (projection plane) and f is the focal length (see Figure 1).

Notice that the origin 0 is on the image plane, the focus of projection F is

located at (0.0. f). and fn x is the vector pointing from F to the point.

-A
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nt/

F
Figure 1. The geometry of perspective projection.

The motion field v. can be obtained differentiating (2.1.1) with respect

to the time. If v - dx/df we have I

1, . f (V (V - )n v n (x - (x - 1)1))( .1 )
f" -x-1 fx. I x.11

Notice that in (2.1.2) vr is given in terms of x and v, position and v'elocitN

of the moving points in the scene, which are not known.

Let E - E(x,. Yp.t) be the image irradiance, that is the intensity of

light at the point (r,,.?/l.) of the image plan( at tOwe tirn' f. If V1, i the

gradient with respect to the image coordinates, then
d E' o E

d l it V E v, (2.1.3)

Now if
d l. 0 (2.1.1)
(it

It can be easily shown that th lie spective projection of tle 3-) velocit Nector

is equal Io the velocity of l he projected point on the imiage plane, since hotii the
vector are defined in ternis of itfinitesinial. This is not true for a generic. ]iriff

vec tor
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then. if 'VTE! 0
aE/Ot VI, E . vP,

Therefore, if (2.1.4) holds, the projection of the motion field along the di-

rection of the gradient can be given in terms of derivatives of the image

irradiance (which can be computed). In what follows, this component will

be called v or the normal component; thus
vVI, E VrEvI = 1,- (2.1.6)

:VpE 71, E

Equation (2.1.5) can be interpretated as an instance of the well-known
aperture problem (Marr and Ullman, 1981; Horn and Schunck, 1981): that

is the information available at each point of a sequence of frames is only

the component of the motion field along the direction of the image gradient.

To recover a full and unique motion field. some other constraint is needed:

Horn and Schunck (1981). for example. showed that there is only one 2- _

D field whose normal component coincides with (2.1.6) and which is the

smoothest of all possible ones. Examples for which (2.1.5) is not true are

well known (Horn and Schunck. 1981). Consider. for instance, a rotating

sphere with no texture on it (i.e. with uniform albedo) under arbilrary.

fixed illumination. Since the image irradiance at each image location does

not change with time, the left-hand side of (2.1.5) is identically equal to zero.

while the right-hand side is different fr-,rn zero almost everywhere. Notice

that keeping the sphere fixed and moving the light source (2.1.5) is again"

wrong. In this case. however, the left-han(-sidc is diifrercnt from zero while

?' is zero everywhere. In both cases the percekied motion in the image is

different from the motion field. It is worthhihle, then. to introduce a new

field. called the mrinimal optical floiu' related to the perceived motion in tOhe

image. and not necessarily equal to the normal (om11ponenl tf t he inot ion field. ..

Noti(e that t he perceived iiotion in tie examphs alhove agrees qualitativel\
a.

~'
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with the left-hand-side of (2.1.5). Indeed, the optical flow in the first case

is identically equal to zero, while in the second is different from zero almost

everywhere. Therefore let us define the normal component OF of the optical

flow as:
OE ,dr VE

.. (.1.7)
:V(,2E1: I'.)E"

Hence, with respect to this definition, the minimal optical flow and the nor-

mal component of the motion field are always directed along the gradient

and they coincide if and only if (2.1.4) holds.

Remark: in the literature, it is usually assumed that (2.1.4) holds. As a

consequence, the normal components of the motion field and of the optical

flow are the same and the latter can be used as a constraint to recover the

2-1) motion field.

2.2. Scene Radiance an(i Image Irradiarice

Let us review briefly some definitions of photometry and make explicit the

corist raints under w hich the image irradiance is related to the scene radiance.

Tll(, iinage irradliance P is the power per unit area of light at each point

(r, .Y p) of the image plane: thus E E(x.,,.y,). The scene radiance 1,

is the I)ow'r per unil area of light that can be thought emitted by each

point of a surface > if t he scene in a part icular direction. This surface

call be fictitlious, or it mraY be, the at lal radiating surface of a light source.

or the ilImIinated s trfae of a solid. Ih(, scene radiance can be thought

as, a fi clion of the poirr t of Il( sitirface arid of theI direction in space. If'

(a.h) are intrinsic coordinat e of' tbe siurface artd (0.,3) polar coordinate,

d(lecriitit!, a direction il space t lith respect to the nornal to the surface.

%%(' (an rite L L(a.b.o..). (tven the sce'li ra(ia 'ce it is possilh, il

prirciple. to comptite the expe(ted image irradiance. For ,xampite in t ie,

', ,W,,. 61f
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P

(XP'yP)

Figure 2. Scene radiance and image irradiance in the pinhole approximation: thc
image irradiance at the point (X7,. Y1 ) Is given bN the scene radiance at the point
(a, b) on the surface in the direction of the line connecting the two points and
passing through the pinhole PH.

case of pinhole camnera approximnation. that is assuming Ithat t he carriera has,

an infinitesimally small apertuire. the Image irradiancoe at a point (x/'*y/' i

proportional to the scene radiance at the point (oi. ) on the surface in the

direct ion of the pinhole, saY (o''.1Y ). where (x, y .(a. 6) and the pinhole

lie on the samre line (see Figure 2). Therefore \Nc bai\

E (xi (a.b).y, (a. b)) L (o.h.o (1' (2.2.1)
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where (x.(a.h),y,,(a.b)) is Ihe image point that lies on the line connecting

(ab) to the pinhole. In practice, however, the aperture of any real optical

device is finite and not very small (ultimately to avoid diffraction effects):

thus (2.2.1) does riot generally hold. Assuming that the surface is lambertian,

i.e. L(a.b. . 3) L(ab). that there are not losses within the system and

that the angular aperture (on the image side) is small it can be proved (Born

and Wolf. 1959) that

E(x,.(a.b).y,(a.,b)) - L(ab)9cos4 4 (2.2.2)

where Q is the solid angle corresponding to the angular aperture and , is

the angle between the principal ray (that is the ray passing through the

center of the aperture) and the optical axis. With the further assumption

that the aperture is much smaller than the distance of the viewed surface.

V the lambertian hypothesis can be relaxed to give (Horn and Sjoherg. 1979)

E(x,,(a. 1)..y,, (a, b)) = L(a. b, o" .3' )Q cos' (2.2.3)

where " and .1" are the polar coordinates of the direction of the principal

ray. It must be pointed out t hat (2.2.3) holds if 1, is continuous % it h respc('t

to o and ,I. In what follows wve will assume that this is thc case. Furt hertnor .

we will assume that the optical sNstein has beein calibraled so that (2.2.3)

(an be rewritten as (2.2.1). Finall, . tio CE' that

di di7'rl V >L. do Al )  (2.'2.11

where V,, is the gradient with respect to the surface coor(dinate since dif-

ferentiating (2.2.1) we have

VF (d.r. dy, V 1i, (da. d). (2.2.7)1

Ue %
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3. Minimal optical flow and Motion Field

We describe a general method that allows us to show that the minimal optical

flow and the normal component of the motion field are almost always differ-

ent, or equivalently that (2.1.4) does not hold. We compute the difference

between the normal components of the two fields, assuming first the Lamber-

tian model of reflectance and then a more realistic one for pure translation,

pure rotation and general rigid motion of a generic surface. It turns out

that the two fields are equal only under very special conditions, which can

be explicitly stated. We also show that the difference is smaller where the

image gradient is stronger, justifying the use of feature-based algorithms. Of

course. this argument does not imply that feature-based algorithms should be

used: it says. however, that locations of edges (meant here as sharp changes

in intensity) contain most of the correct information.

3.1. Conputing the Miiimal Optical Flow

Consider a rigid surface S nimoving in space from (2.2. 1). The image irradiance

E at the time f at the point (x1 .yl,) is equal to the sceie radiance L at the

point (a.b) on S. i.e. F(.r,.yj,.t) L(a.b). The image irradiance at the

tirne - At is given by the scene radlianc of the surface at the timer - At.

As shown in Figure 3. the point I on .S' that radliali(s toNard (.Tr. Yr) at the ,

time t - At is the point ((I Aa. b Ah).I The normal N to S at the tine

I At at the point (a A.h b Ab). N,.((i Av.b Ab). will be U

Nt .A(a A.h., Ab) N,(u A,.b Ab) • AN (.1.1)

I We assurne t hat I lhe surface (orres)ords I o a mrovirig convex body Io avoid self-
occlusions due to the rnot ion. lit fact. lw conlFptitatioi thFat follo\, holds for ',o ,

any convex si rface patch

'.°

%U.~* ~ ~ '. -.. .. '. . % .**..'.%. ' ',
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(a Aa.(aAb)

AN (3 (+At)

t otl -)Lt That (orm. N, i) a the osr lt ied a te p oin of, b)an N ) a'ti

(a Aa.b Ab)

,%hee A thefirt oder ar'tio of du to he otin ofS d rin
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kind of motion. Similarly, for each argument A of the scene radiance, we cal

write

AtAt(a,b) = At(a,b) -; AA. (3.1..I)

To compute AA, let us distinguish between arguments of L that are

intrinsic function of the surface coordinates (a, b), such as texture and albedo,

and those that are in fact function of the space coordinates (x.y,z), (such

as the illumination and the point of view) and that are expressed in terms

of (a,b) only for convenience. If A is an intrinsic function of the surface

coordinates, it follows immediately that

AA =0, (3.1.5)

while if A is a function of the space coordinates. from the Taylor expansion

we have

AA -VA .vAt. (3.1.0)

where V is the gradient operator with respect to the space coordinates. Let

us assume that L can be written as a function of in arguments V. i I ..... m

and of N. Then. taking into account (3.1.3) and (3.1.4). (2.2.1) becomes

E(x ,,,yt A At) - L(A'(a - Aa,b Ab)t A..V.Ni(a Aa.b Ab) - AN)

(3.1.7)

at time t At and

E:jj1 (tab.'~~) (3.L.S)

at time t. Therefore, using (3.1.6) and (3.1.7),

dE
dt

lm L L(,;(a Aa.b .Ab) A ._ N,(u Aa.b Ab) AN)

L(A',(a. b). N,(a. b))), (3..

where the AA' are computed using (3.1.5) or (3. 1.6) according to the kind

of argument. horn (3.1.9). the miniltial optical fio% ran lbe der; ed vasl '

To simplify notation, lel us su ppress the subscript t from L'quati n (3.1.9).

%I V
-/ ,
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From (3.1.9) we esily get

aE (dadb\ dL V4' .V -L N
t ... L d't " .. 4

if p of the A'(i 1. m) require the use of (3.1.6) to compute VA and

L ( O L 3 L L for N N , N Y
3 N II a, A fr (.\a.A'.z)

Therefore, using (2.1.6), (2.1.7). and (2.2.4), we can write
1 1-. d L '0 L

V - - - *VA' -I - , -- - N (3.1.10)I t =1
Thus, the normal components of the two fields are different if the surface

undergoes a motion with a rotational component, or the reflectance function

contains arguments depending on space coordinates.

Let us consider now sorie interesting examples in detail.

3.2. Translation of a Latinbertiai Surface

(onsider a lam bert ian surface S. 'T'he scene radiance d ie to S will be

I, pl N (3.2.1)

where p is the albedo of S. I I he uit vector it the direct ion of the il irini,-

tion and N is the unit normal to he .surface. l,et us- coripult, the (lif[eren(v

(.1.10) belween the norinal components of the optical fl~o' arnd of the, rno-

lion field corresponding to a Irarudation of .s in space, .itii velocit v urdcr -.

riniform fixed illumination. Substituting (3.2.1) in (3.1.10) and changing the

sign. wec ha\v .

r () ., 131.2.2)

inC, ' 0 and none of the argu tierut s of 1, in (3.2. 1) depend, on spacet (r- r.%'.

si raint, (/ is (onslant). Therefore. the rmiinial oplical flow of a t rati,,lit rig J-.

lambiert ian surface urniforrnrl. illurinated is exa(t ]. equal to the riot ion field.

.'SA:

map m inlla~iiil-liD0
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Remark: in the case of non-uniform illumination the right hand side of (3.2.2)

contains an extra term due to AI. Using (3.1.6) to compute the components

of Al, (3.1.10) yields

1 (ldx dl dy dldz)N
ax di ody dt - z di)N

which can be rewritten

I dl
- . N. (3.2.3)

V,,E: dt

since 9I/Ot 0 (the illumination is supposed to be fixed). Let us consider

now the case of a rotating lambertian surface.

3.3. Rotation of a Lambertian Surface

Let S be a lambertian surface rotating in space with angular velocity w. Let

I be again uniform. Applying the same argument of the previous section but

taking into account the constraint (3.1.3) for VN, we get

'. Or pN .1 w

?, - .. jx (3.03.1 )

In the case of rotation, therefore, even under uniform illumination. the

minimal optical flow and the normal component of the motion field are dif-

ferent. They are equal for any surface only if w and I are parallel. This

corresponds to the case of a surface rotating around an axis parallel to the

direction of uniform illumination. In the case of non-uniform illumination,

an extra term like the one, in (3.2,3) mnust be added to (3.3.1). Remark: it

,4: is worth considering analytically the example of tile rotating sphere of the

previous section. l)ue to rotational srmn er.\ \ w(, have

N(a Aa,b Ab) . w N(a %a.b b)AI N(a.b) (3.3. 2)

.a, "!b on the sphere. Fur hermnore.

I .-... I . ,(a AG.b 6 Ab) l1(a _a. b Al)) _Ai I,(a. b). (3..: )

u, itili ii
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since in this case the displacement in space. vat, is equal to the displacement

on the surface, (Aa, Ab). Therefore, if p is uniform.

OE

t = . .(3.34)

The minimal optical flow is then. as expected. equal to zero under any illu-

mination.

3.4. Translation of a Specular Surface

Let us consider now a model of reflectance more realistic than the lambertian

one. Following Phong (1975; see also Horn and Sjoberg, 1979) we define the

scene radiance as a linear combination of a lambertian and a specular term,
z. e.

, 'lamb Lspec. (3.4.1)

The larnbertian term is equal to I hc one used before, while the specular terni

is

(1..2)
I)

where s is the fraction of light reflected by Ihe surface. D fn- x is the

vector pointing from the focus to the radiating point and r
R I 2(1. N)N (3.1.3)

is the unit vector in thlie directtion of the perfect specular reflection. Let us

assume that s is not a funcl ion of t he direct ion of Ihe icni(ent light an (3 hat

it is constant on the surface. The specular terrn is thus proportional to the

cosinc of the angh, lw cen th, direction of spectilar reflection and the line

of sight.

Since we are conmputirig (erivatives and I, is a linear combination of

L., ,,,~, and LI.. we -an compute separatelN the contributions to the rin-

imal optical flow due to the lambertian and the specular terin, adding the

I....



results afterward. Therefore, we only need to compute now the specular one.

Let us consider, first, the case of pure translation of a surface S radiating

accordingly to (3.4.2) and let us call S a specular surface. If S is translating

with velocity v and I is uniform, substituting (3.4.2) into (3.1.10) and taking

into account the constraint (3.1.2), we have

s (D 2v• R -(D • v)(D • R))
V1 OF : . , -. .._ 1 (3.4.4)

since from (3.1.6)

lim AD _ aD dx aD dy +D dz _ dD = dx

t-. At ax dt ay z d+  zdt dt dt

Using again the two fields we get a well known vector identity:

- s (v ' D). (R D) (3.4.6)

Thus. in the case of translation of a specular surface, the minimal optical

flow and the normal component of the motion field are always different.

Remark: let us consider the case of orthographic projection. When f - oc,

(3.4.6) becomes

--.OF = 0

since when f - oc, D , oc. Therefore. in the othographic limit. the

minimal optical flow of a translating specular surface is equal to the normal

component of the 2-) motion field.

3.5. Rotation of a Specular Surface

Consider now the same specular surface S rotating in space with angular

velocity w. Then, suhstituting (3.4.2) into (3.1.10) arid taking into account.,

the constraint (3.1.3). we have

W"



17

V-O D((l N)(D w N) (D N)(I N))

((P ., x) •D)-(R •D)-

((W ), xI,) D) (R > D)), (3.5.1)

since v w x and x( gives the location of the axis of rotation. Now

(3.5.1) gives

V_ F (2D'(I .N)(D. w x N) * 2D 2 (D • N)(I.w > N)-

O2 ((Wo :x) .R) - (D.R)(D.w .x) - 2D 2 ((W ' x,,) D) (R x D) )

This expression can be simplified in the following way: since D fn -x,

v OF (2 [fD2(I-N)(n.-w, N) 2D 2(I.N)(x.w N)-

21)-(D N)(I w) 21)((w x.,) D)

(R D)).

that can be rearranged to give

'',

V Oj .E Dw (- ) (2W 2 (1 N)N (D. R)x)

•D2(I w) . (2(D .N)N x) -"' ((wo . x .) . D I • (R .D)) .

but X fri D: therefore,

V o, . . , O). (2f) 2 (1. N)N f(D R)D)VIE D" -

(w). (2D(D N)N I) 2 D f1)2 1) 2I((w x ) D) (R D)).

That isI

1'

p'.,-,-,"---- -- ." "-...... ..-...-- .-.------- . .,.......-.......... .. . '
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vL -OF -:V-I3( ) (2f D2(1.N)N - f (D -R)D).

S2). (- - 2(D N)N), fD2n) 21) 2 ((W - x,,) : D) (R, D)).

Since

(I x). N (N .

we have

V - O -- (n u.,)). (2f I (I. N)N f f(Dl)b - f D 2 )JV,E, D s'

(I x w)- D 2(D 2(D.N)N))-

x 2D2((w x,,) D) (R D)), ."

but 1 -- 2(1 N)N R, and so

p Or D: V. (1)'( u •) -iD 2(D N)N)

f(n -o)- (D . R)) 21) 2 ((w . x D).(R . D)). (3.5.2)

The minimal opt ical flow. t herefore. is equal Io ihe mot ion field for any

specular surface onl when 1. w and I are parallel.

Remark: let us consider. aga'n. the orthographic limit. Taking into account

that a, f x. 1) • x and D ) . (3.5.2) becones

Or " (nII N)(w I.N) • (I.N)(uw . n-N)) (3.5.3)

Therefore. even inder olhographic limit. Ifc 1 %,() fields are different.

3.6. General Case

Let us consider. no%%. Ohe geeral ca-e. \\f .Nill assume (3.4.1) as scene

radiance of a surface s' undergoing a gi cii rigid motion (cornposit ion of a

5.

* - - . - , • , : *5 .- 5 \1 * - , -.i . ... . i ... i :i -** 'I
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rotation and a Iranslation) in space. Adding together (3.3.1). (3.4.6) and

(3.5.2). t obtain the difference between the motion field and the minimal

optical flow for a surface in the general case under uniform illumination. i.e.:

pN ' w .s (v , D).(R D)
, OF V _ E

1):" VvE ul))1 -).(D 2(D .-N )N ) .

f(i - w) .(D , (D - R)) 21)2((w . x,) , D) -(R. D)). (3.6.1)

The right-hand side of (3.6.1) is generally different from zero. In facl.

there are no general conditions under which it is identically equal to zero.

Notice. however, that if ,c and v are bounded

lir Oy - 0. (:.6.2)

V F OF -0

Equal io 3.6.2 shows that the points in the image where t he gradient is

It roTger are the points \w here the minimal opt ical flow is closer to the iot ion

field. These points are characterized by sharp changes in intensity - edges

-t. hat usually correspond to important physical events OnI sIurfaes. Iuch

as boundaries. orientalion d isonTlininitIes and especially surfacc markings.

Thus. to solve problems such as stlructure from motion, or tlhe recovr\ of

1he 3-1 velocitY ield, w hich require an accurate e inmalc of the 2-1) riolion

field. edge-based alg oritlhbns scri uiore suitable than algoritlhm.s base.d on

spatial and lemporal dcrivativ, of the imriage brightnvss...s a t onsciuctt.

in order to obtaini a prccise rccoist ruclion oft he 2-1) tiothion field. algorihni

based on the solution of ie correspondencc problem aiong edgcS Ina\ i

ii-t. Noltice i ha metruli' (dii le hiev. performed bv,\%vcn framn liat ,irc

losl\ spaced iII it111 he(l' ca lie strurn tire from ?Ii(DtmiW (()oftu iti 1)H 11

1e'.4t perforied ll \\lo tv \e i ihl\ upael fraui.s. 'l'h \\ lholc arguiruieit ,pgt' e

x,
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with the fact that, as intuitively expected, the minimal optical flow and the

motion field at image features corresponding to precise locations on the 3-D

surfaces coincide. It must be pointed out that in this analysis we have not

considered shadows and self-shadow effects. They usually give rise to edges

in the image that do not correspond to features in the scene. Furthermore.

the Phong model of reflectance does not include sharp intensity changes due

to specularities.

4. Qualitative Properties of the Minimal optical flow
,?

Traditionally, the optical flow has been considered as the first step for recov-

ering 3-D structure and 3-D motion. In this chapter we suggest a different

use of the minimal optical flow. We argue that qualitative properties of the

2-D motion field give useful information about the 3-D velocity and the 3-I)

structure of surfaces and that these qualitative properties can be usefully

inferred from the obtainable minimal optical flow. As an example of this

approach. we introduce the qualitative properties associated with 2-I) dy-

namical systems and show how to process minimal optical flow and motion

field for making them equivalent to flows of dynamical systems on the plane.

We then suggest. from properties of structural stability of dynamical sys-

tems. that the riiinimal optical flow may be equivalent to the motion field in

terms of qmalitative propertie-.

4.1. What is the uiiniinal optical flow for?

In the previous -ectiori wt have shown t hal the minimal optical flow auud ":.. .

I f riot ion field are difffremt I a mltm l ever\ %here. As d coriseq uemcv, he

':A1



milinial optical flov cannot 1e used to solve probleri- -uwh as, ,trijctiire

from motion and recovery of the 3-1) velocity field, whose solutions rely on

precise reconstruction of the 2-1) motion field. We have also proved that the

two fields are very similar at locations where Ihe image gradient is strong.

This led to the suggest ion that feat ure-based algorit h ms may prov ide inore

reliable solutions to those problems. A

,,.

Here we argue that the mmiin imnal optical flo\w, as a fiel(l (lefined allfhosl

everywhere, can be used to retrieve meaningful informalion about the 3-l)

velocity field and the 3-I) structure of the scene. In particular. we consid(er

qualitative properties of the 2-D motion fields which can be (:onfiecled to

significat ive events in the scene. Such properties are likely to be found in

the corresponding ruin inal optical flowvs as well. AXs art example. consider anl
,.

object moving toward the irage plane. 'his kind of motion generales a focus

of exparnsior in Othe 2-1) niolion field. The presece, of a focits of expallliSiOtI

on the image plane. therefore. rriay be related to an ol, jec ti ig low~ard

1we plane itself. As wve iave seen. however, t liin fortriation av ailable i.,, ;int

tIhe tiotnion field, nor its noriial ConpoerIt. but tlie nTiillnn Ii i optical f,, Wor

it'- normal collipolllit). If' Ihle difference bevven the( li\N elfl'k i, ,idlieikt -l

sNlmall. \%, expect 1 I lid a focu, of ex lpansion also in t lier, ii i flal opI (iil flo\.

lI) the rlexl erl ionp ,,e will -mo\N how lhe 2-1) iotlion field itid tihe optli 1 ll\ ,

cai be corilri rd ,er tor fieids tangent io fl.,ws of' sollie (1\ rahi al -\ ll I: itil,.

le(oril- thlji pos.s.ible to e.tabli.,,h a sugge ,tiv atalogN - \ f\u'4nI' I I l l t 1' r..

of s rimeIural tl ilitv of dytiiiiical sNsteris and the quia ilit at i'e cl script lol

of I[flu I\%() fields.A fo, u of cexpansion of a (varialical -, .. eiri. for ('xNilnt,.

;i , ,ahlc proprt. for srniall pert urbat ions of the s\sctnli:t li- rwe('ani- tlhal

oi" eln a \,vclor liv'l ,.ilih a iocus of expansion, every fielId oh ailtd lrorti it h,\ I

tIcai,, . of a -. iflif Wit "I pll pert urbation will aIl,,, ,h, .x it fo, , of x ~im i-loll. %

A. IF,, SP

' v%~% .% .S~~fr%4 ~ .~ ~~'~ *' - *q~ . .,,
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4.2. Smoothing the Optical Flow and the Motion Field

In order to establish a connection with the theory of stability of dynamical

systems. we must insure that the optical flow an(I the motion field have an

appropriate degree of smoothness. This is not always the case. because of

discontinuities arising at object boundaries or to noise affecting the optical

flow data. We suggest to use a filtering step to smooth the field. It is

worthwhile noticing that a filtering step on the normal component of a dense

motion field is a (regularization) method to recover the whole 2-D motion

field. 2

4.3. Qualitative Descriptions of Dynamical Systems

For a rigorous and thorough review on dynamical systems see Hirsch and

Smale (1974). Here. for the sake of completeness. we summarize the main -

definitions and results.

A dyrnamical s/stern is a ( n map o: R A - A, where A is an open

set of an Euclidean space arid writing o(t,.r) ot(x'). the map ot: A A

satisfies:

(a) o, :A - A is lIhe identity:

(b) the composil ion ot (o (.)) ot for each f. H.

A dynamical system ot on A gives rise to a differential equation on .1.

that is a vector field y: A E defined as follows :
d
di

This "smoot hed" 2- 1) mot ion fielhl ra riot be t he sariie recovered using st andard

algorithms. but its qualitative propert ies are likely to he preserved. The analog.

we are about to present, indeed, will support this argument (and the equivalencu

between qualitative properties of the 2-1) motl on field and the optical flok a,

well)

".k



Thus, for every r. y(x) is the tangent vector to th(, curve • o,(.r a 1 (1.

Equation (4.3.1) can be rewritten in a more conventional way aI

dx y(x). (1.3.2)

dt

Under suitable conditions on y(x). there exists a dynainical system associ-

ated to (4.3.2) as a differential equation. Namely. a sufficient condition (

y(x) is that it is a C"' function defined on an open subset of R". mInuilivel\ a

dynamical system can be thought as a one-pararneter fanily of traTlsforiria-

tion Ot: A .4 describing the niotion of the points in .4 as tho tirne passos.

The trajectories of the points are given by the solution curves to equation

(..3.2). Since equation (4.3.2) is autonomous (that is, the right-hand side

does not depend explicitly on time). if y(x") 0. then xr x" is a solution

to it. Without loss of generality, we can assume that x'' coincides with the

origin. For obvious reasons, we will restrict our attention to planar systerts.i"

.(i.e. in what follows. A will be an open set in I?2 ). Sohiitions like .r are

called equilibrium poin ts or equilibria. In w ca.,e of' ticar l \ n t(,i usefl

qualitative information about the behaviour of the solution to (.1.2.2) (an be

obtained from t he eigenvalues of the matrix A of the (oefficients of the diffrer-

(nt ial equal ion. 'Ile rest rict ion to planar svst('1115 redliv(e, he c lassificat ion

to four fundamental (ae,:

I A has real ,igerivalm-s of opposite signs. In this case the origin is called

a saddle: the equilibrium is unstable (an equililbriurr i.. stabil if an

nearby solulions to it sia\ c s (,ar\ for all h, ful urc ihm . It i- un.,labh

ol hirw,.vise).

i/ The eigenvalue, have negat ivye real parts. 'I' he origin is called a .stAm and

it is stable equilibrium. Th(, riain propcrly of a sink is that

ill 1(1) 0

- ,~*,.*'* *.**.*,*,
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/

Figure 4. Vector field tangent to a planar sink: all the solutions curves are pointing
toward the origin.

Qualitatively. the phase portrait of li( solut ions. that is. the famil. of the

solutions curves as a sub.mt of ?'. look,, like Figure 1. \here only some

tangent vector, of sontie solutiolt, curvcs have been dr~v, n. Sink's can be

classified depending on further characte, st ics of the eigenvalues. A fo u.s

(Figure -). for example. represn is I lie case of coincident eigel\altc-

(M is suppose(d to be diagonalizable),: a riodc. th, (a,, of dif[erent real

eigenvalue: a *;piral. the case of complex conjugate ( eig(TvaI,\aIe,. \ 'il 1 K-

increasing rotational corponen ICorrespon)I 10 each (iff'ret cvae.

!11 The eigenvalues haVe positive real part.s. The origi:M i called a .,orcf.

The mnain propert.N of a ,ource, Is ihat

irn x(t) x

and

liri _.r(l) 0.

A source can be considered as Ih,, dual cae of a s-ick: t phase port rail • a--

of a source and of t he correponling sink are I he same except thatl for Ihe

~' '
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direction of' Ole motlo tOit 'hcb ItII-I .t b rexcred. 1? t'ers It g the a r row,

ill Vigure .1. for CXaiTIIple. obtain) the phae ortrail Of' a syte %ith

coi nc ident real positiv ye genvaltes. A s!ouirce is obviously a ri unstable 4

equiilib r ium.i

[V The vigenva ties are pt rc irma it a rv. The origIn is called a ((lie r. All

the solunlions, are pf rwod C %%III the sauTe period. A center isa stable

equ ilitblriut.tFor at rea-oit t hat %% Ill be miade clear soon. t Iiis last case Ps

of little practical i itcst. since eveni a small pt. lurbation of the field wlil

make the orbits, spiral inward to (or outward fromn) the( origin, changing

the qualitative properties of the solttion's curves. In other words. a

centIer is not at strucliirally stable lpropert V.

'Ihe( crtucial point i, that this classificat ion is, ciautit,. Lve rv soltit on

to Equiat iont (4.:p.2) (Int the lnewar case) loohs- 13k a saddle, a '111ik. it '()III-( . or

at entelr. Htel( sanIte c lait,,liCat iot holds for the( itontinear ( ti-v \%t h rcpcj 1 1(

Ihc ('igeltvalties of, lie derivative of the right-hattd side of' 1;2. d ~h'i~~

as a linear operator. Ithi- i, ((ln';valcwt to colt~idct a11110,11 aIj)VoF\i!Iwt tWt

(of I i' \ sI 1 e i ll t n li ItICglIIbOrs Of IhC ()1tgi1l11 I lo\\('%t'T t Nw-i 1 i! -\ -Ita! II

art illl('sl II(in ilit hir-til'. sIrt tltev cani shoN also aitl iici (Jualiit 1Il X

behavior. A\ ntott-litiar .\ tIcIIt. Imiced. (alt have itt adfitio lt pilt C(cb

]Ii ttvvlX . at Ililit (X I" a closed ori'l tO\',ard" % lim h~ w her sointoi

tItVV'- spiral %% It )IIt th sailwits\ inlttot I( lt(riodl. lh'littiitg -/it t t. 1,

as 1, r 0 A (iIj 11 s 1h hatl I, x \\ I I .I Y , ( a (I l sii im 111a rk i

o-ltimtt .,f f 1,. (il a- 1, , (.r) b(I A utcht thilt I N "c wIh rI, x

at limit . cIv i a closedI orblit -, sch thIat L. .r or x~r fr '010

.r ider oinc\\ hat ittlore res-t rict 1\ coitd it lolt' ai lul It I cIc .t it be al

% 10 pic rtodic ot rtctor ( For a r 1goroti, dc'lIrtIt Iolt of it cce I 11irscli )titd Si le P171I

Ilitt tIt 1Ivcl\ it p('riothit t I rtI or j a hi 111 X clIc -11ch I thot tlea r 1\ rIq r It omit'-

loo
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not only have the same asymptotic period but also are in phase. Saddles. %

sinks, sources and periodic attractors are very important for a qualitative

description of planar systems. Indeed it can be shown that such properties

are structurally stable, that is they persist after a perturbation of the right-

hand side of (4.3.2). As far as planar systems are concerned they also fully

characterize limit sets. By means of the Poincar6-Bendixon theorem it can

be shown that compact limit sets other than limit cycles are saddles. or sinks.

or sources or trajectories joining them.

4.4. Equilibria and their Interpretations

In the definition of dynamical system the right-hand side of Equation (4.3.2)

can be interpretated as a vector field tangent to the family of curves in the

plane, solutions to (4.3.2) itself. It is straightforward to see that both the

smoothed optical flow and motion field (i.e. after the filtering operation) carl

be considered as islances of such a vector field :. Indeed, it is sufficient to

insure that both the fields are continuous with continuous first derivatives.

The classification of the solutions can now be interpreted in terms of char-

acteristic points of the 2-D motion field. A source, for example, corresponds

to a focus of expansion of the field. The structural stability of the source.

in turn, says that a focus of expansion persists even if the field is perturbed.

From this perspective a focus of expansion is expected to be detectable in

a 2-D motion field reconstructed with different algorithms and in the opti-

cal flow as well, when they can be considered as perturbed exaniples of the

"We stress the fact that the analogy with the dN naical syst em is bctween phws(:

portraits of dynamical systems and motion flows. The parameter t in the defini-

tion of dynamical system is not the physical time. We considered motion flows.
such as the 2-I) motion field or t he optical flow% at a fixed time. corn.aring then

with the vector field tangent to the phase portrait of soome systern w(, are liot
interested in the physical meaning of the underiy itg dynamical s.Nste '
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-Irmue 2-1) rnot ron field.

4.5. Discussion

If outr point ovewis correct . t he on I.N critical prope rt N of the opt ical Hfow i-,

hat it have t he 'arte qualitative proper-ties of the( 2-1) xolocityi fieldJ .Not iCe

tha-t thI! i re~qiiniit alIso sat isfiec t Iwo itmport ant uses, of' the opt ical flowN:

to ()(effcCI(~I7l do~iit if., arnd( to ht) / l tol) (1g - raiti mIt C/i tiq of the stereo t vpe.

needed for t he corn puttat ion of strimct tire-f'rorr- nt ioi. Quantitative equ iva-

lenlce. whticht is i nnpossiIlc tin genevral. Is in aiiyv ase irre levant for this use of%

the opt icalI flow. As a uonsteqitnce. maiiy differerd -optical flows" mecy be

definted. lFquat ion (2.1I.6) does riot have a nv pri vii iged role: other defi niltions;

c(idd Ime prefelred onl the Ibasis of criteria such as cornpitalbil i t (front Imnage

datta) or vase of' imiplentitatioit (for gi ven hiardwarv cowit rai itt s

Tlli point of \ v has, clear iruplicat ioti for IjIological visuial ~sers

rrto\eriieiit ettirgcell- (sa.i H ie retii ) doC niot hitve to comrpurte the

SpeCific nIItIintil Iopt (I Iflo\\ defirted 1)\ equ Il ott (2. 1.6): ot her. possild.

,Iltriplvr. c'lirrites of rIte .cloit I eld t hiat prc~cr~e itt quaitlative proper-

tic, iir( equally good) (aniiate (,nu' Ii a correclation-like aligorithiti). This

aitii niti mra\ vxplait vM i\ t It mrodels proposed to explainl tlito O depenttflrt

Iltlii\ ljr III itv-vclt ( la"itril irid Re(Ic. lit rdf 1. 1956(). mtion [w pr(epioni

Itt humrrArv, ( \art Santtert aind prlr.I91)and~ physiology of' (('11 (MirloxN

airtl lvi 196.-?): Torre (Irnd loggii). t!)7*) are all iniplertenting comiputa-

I ions quhite uif[ercnit fromn t lie rimmtital (ifpical flow ats it is lit l definled (e

(qultori 2.1.6). 111 adit[tort all tI' lie0(ie rt1d0l d101 rit\ picallv\ nteasitre ye-

lou i t\ riot v\ en 'Ii If li cav of riif'orrrm irimilt in iii a rortopariallvl plattec.

~lfor -liripl(' rilot jor of thfi t relt t\ pW tilie outputl of tilel '101i a, thec

A.A. ~(oircrlat ion mrodckf (lepeilufo hut Iic fit \locit\ andi thesald-tulr f

%4
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the moving pattern. One is tempted to consider this as a weakness of thes.

models compared to the definition of minimal optical flow., Equation 2.1.7.

Our results, however, show that this is not the case: first, the minimal optical

flow is correct only in a very special situation; second, all these models ma)

have the same qualitative properties of the motion field, which. fror, our

point of view, is the only critical requirement for a "good" measurement of

motion. The next question is of course whether these biological models are in

fact "close" enough to the motion field to share the same qualitative proper-

ties. We do not know the answer yet. We conjecture, however, that they arc

indeed usually similar enough to preserve the main qualitative properties of

the motion field. The conjecture is based on results (Poggio and Reichardt.

1973 and Poggio, 1985) showing that most of the biological models proposed

so far can be considered as special instances or approximations of a general

class of nonlinear models (characterized as Volterra systems of the second

order); and that the minimal optical flow, as defined in equation. is also

approximately a Volterra functional of the second order (Poggio, 1985).

It is important to stress that the approach outlined in the second part

of this paper for classifying the qualitative properties of the optical flow is

only one of the possible methods. While we plan to develop further that

particular approach, others should be explored as well: in particular flow.s

that do not correspond to dynamical systems on the plane may be better

suited for capturing important and stable properties of the velocity field

such as motion discontinuities. In this case, the classification of qualitalivC

properties should take place wit hout a preliminar srnoothing operat iou.

In addition to the classification of stable qualitative properties of the

velocity field, tmuch work needs to be done at the level of their irdcrpre'/alio,

in termns of 3-1) structure and 3-) velocity. Sone of tile qualitali\e properle'
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."M of the (smoothed) velocity field have an easy interpretation in those terms:

an obvious example is again a focus of expansion that is usually related

to "crashing" motion. It is likel. that many, more subtle relations exist

between the qualitative properties of the flo\ and thE underlying 3-1) motion

and structure. For example. prelimin arx results b.\ Torre el al. (personal

conmrunication) suggest that the number of focises in the (smoothiedJ field

ma\ be characteristic for the rigidity of' motion in the vi, ible scene.

Finally. we should mention an obvious extension of the approach de-

scribed in the second part of the paper. We have only considered so far the

velocity field "frozen" at a given instant of time. The succession of image

frames provides in fact a time-dependent field: the evolution in time of the

qualitative properties we have described ho\ they are created, disappear

and transform should be characterized in qualitative terms, for instance

using the language of catastrophe and bifurcation theory. The use of time-

(hependent fields should be practically mch irore rotist. because of tOh

re(lundant information available ili a seq (ience of i ' ry clo. cly spaced frames

(in I irie). Our analysis should be extend(ed to qualitative propert ies that are

i-ructurally stable riot only at a given time but also in the true dependent

field.
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4.6. Appendix Al: Perspective and Orthographic Projections

In this section we explain in more detail the geometry of perspective pro-

jection used in the paper. Let n be the unit normal to the projection plane

and f the focal length. In order to obtain the orthographic projection as

the limit of the perspective one for f - )c. the focus cannot be located at

the origin of the system of coordinates. To simplify the geometry without

losing in generality, let the origin lie on the projection plane. The vector

pointing from the focus to a point x (r. y, z) is now fn -1 x. To obtain the

expression of the projected point x,, notice that from Figure 1 is easy to see

that
fn-- x fn x,,

(fn x).n f
From that. we have

X1, fn f x .
f x '.

and finally

f x1

or
f

x7 f(x n - (x 11)).

The orthographic projection equation cal hc easily oblaile(] for f Dc. i.,.

X,,rt lir xV (n - (x . ni)) (in (x ii)).
f -f x • (

Combining the last two equations. we obtain the general relationship

between perspective and orthographic projeclion. that is

f
x/., x ,,f x

S ~ &'U~ ~ % ' ' V, '...."
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